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ABSTRACT

+ In dioecious plants, females often prioritize reproduction over growth, potentially

investing more in defence, while males grow faster but allocate fewer resources to
defence, making them more susceptible to herbivory. Recent studies challenge this
view, showing that males may grow more slowly and sometimes invest equally or more
in defence. Variability in sex-specific herbivory and defence strategies may stem from
seasonal shifts in resource allocation, with females prioritizing growth early in the sea-
son and reproduction later. These changes complicate herbivory patterns, necessitating
research that considers temporally dynamic factors.

This study investigated plant sex influence on herbivory and defence mechanisms in
Pistacia lentiscus over the course of a year in Donana National Park. We assessed insect
herbivory and leaf traits linked to herbivore resistance, including phenolic compounds
and specific leaf area (SLA), in 100 P. lentiscus plants (53 female, 47 male) at two sites
during early and late seasons.

Herbivory was higher in males than females and increased late in the season. A signifi-
cant interaction between plant sex and season revealed that males experienced more
herbivory late in the season, while there was no significant difference in the early sea-
son. Leaf phenolic concentration and SLA were higher early in the season, but these
traits were not influenced by plant sex or the interaction between plant sex and season.
Moreover, plant sex and season effects on herbivory remained significant even after
controlling for leaf phenolics and SLA as covariates, indicating that these traits do not
fully explain the observed differences in herbivory across sexes and seasons.

Opverall, our findings highlight the complex interplay between seasonality and plant sex
in shaping herbivory and defence strategies, emphasizing the need to consider temporal

dynamics when studying plant-herbivore interactions in dioecious species.

INTRODUCTION

Sexual dimorphism in dioecious plants has a key ecological role
by promoting genetic diversity within populations (Ash-
man 2002; Abdala-Roberts et al. 2016). Dioecy, present in ca.
6% of higher plant species and 37% of plant families (Pannell
& Barrett 1998), often leads to substantial trait differences
between male and female plants (Boecklen et al. 1990; Barrett
& Hough 2013). These include variations in defence against
herbivory (Cornelissen & Stiling 2005), largely shaped by sex-
specific differences in energy allocation to growth and repro-
duction (Banuelos et al. 2004). Females commonly allocate
more resources to reproduction—producing flowers and fruits
—which may constrain growth and favour higher investment
in defences (Coley et al. 1985). In contrast, males typically grow
faster and may invest less in defence (Jing & Coley 1990),
potentially increasing susceptibility to herbivores (Cornelissen
& Stiling 2005). However, recent meta-analyses and reviews
challenge this paradigm (Avila-Sakar & Romanow 2012; John-
son et al. 2015; Juvany & Munné-Bosch 2015; Sargent &
McKeough 2022), reporting species in which males grow more
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slowly (Banuelos et al. 2004; Massei et al. 2006) and invest
equally or more in defence than females (Yang et al. 2020).
These findings reveal the complexity of plant defence strategies
and caution against generalizing patterns of sexual dimorphism
across taxa.

Part of the variability in sex-specific herbivory and defence
may arise from timing of measurements within the growing
season. In many dioecious species, resource allocation between
growth and reproduction shifts seasonally (Zhang et al. 2016;
Tonnabel et al. 2017). These temporal dynamics may lead to
changing herbivory and defence patterns between the sexes as
they adjust allocation priorities. For example, females may
focus on vegetative growth early in the season and shift toward
reproduction later, altering defence investment and potentially
affecting susceptibility to herbivores (Liu et al. 2021). Likewise,
males may emphasize reproductive output early and reduce
defence investment, resulting in greater herbivory later in the
season (Agren 1988; Popp & Reinartz 1988; Delph 1990). These
temporal shifts complicate herbivory patterns and underscore
the need to integrate seasonal perspectives into studies of
plant-herbivore interactions. Notably, previous research has
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Seasonal and sex drivers of herbivory and defence

relied on single time-point measurements, and no study has
explicitly examined how sex-specific herbivory and defence
vary throughout the growing season—overlooking a critical
temporal dimension in ecology of dioecious plants.

Defence traits may help explain observed seasonal and sex-
specific patterns of herbivory. Shifts in traits, such as secondary
metabolite concentrations or leaf morphology, likely reflect
changing resource allocation priorities across the season, as
plants navigate trade-offs between defence, growth and repro-
duction (Koricheva & Barton 2012). For instance, elevated con-
centrations of secondary metabolites early in the season may
indicate transient prioritization of defence and photosynthetic
efficiency, offering protection during vulnerable development
stages (Gaytan et al. 2022). Although sex-related differences in
herbivory may not always coincide with significant variation
in defence, subtle differences in trait expression could still
modulate herbivore pressure across sexes and seasons. These
dynamics suggest that defence traits are important components
of a temporally variable strategy, and highlight the importance
of considering both sex and season when interpreting herbiv-
ory patterns. However, to our knowledge, no previous studies
have explicitly tested the joint role of sex and seasonal variation
in shaping plant defence traits and their consequences for
herbivory.

In this study, we investigated the influence of plant sex on
herbivory and defence in the dioecious shrub Pistacia lentiscus
L. (Anacardiaceae) across the growing season in Donana
National Park. We measured insect leaf herbivory and two key
leaf traits associated with herbivore resistance — total phenolic
content and specific leaf area (SLA) — in 100 P. lentiscus plants
(53 females, 47 males) at two sites during early and late grow-
ing seasonal phases. In this species, phenolics act as chemical
defences that deter herbivores or reduce leaf digestibility, while
SLA reflects leaf toughness and palatability, with lower values
typically indicating greater resistance (Jonasson et al. 2003;
Landau et al. 2010; Navon et al. 2020). Our work addresses two
main questions: (1) do plant sex effects on herbivory and plant
defence vary over the course of the growing season; and (2) are
seasonal and sex-specific patterns of herbivory mediated by
variation in defence traits? By incorporating temporal dynam-
ics into the study of herbivory and defence, our findings offer
new insights into the role of sexual dimorphism in shaping
plant-herbivore interactions in dioecious species.

MATERIAL AND METHODS
Natural history

The mastic tree (P. lentiscus) is a dioecious evergreen shrub,
dominant in Mediterranean lowlands (Martinez-Lépez
et al. 2020), and reaching heights of 1-5 m. This species pro-
duces new leaves during vegetative growth in early spring, just
after flowering, signalling the start of the active growing season.
Conversely, the largest loss of old leaves typically occurs in
autumn and early winter, as the plant enters a period of dor-
mancy or reduced metabolic activity (Martinez-Pallé &
Aronne 2000). As a keystone species, the mastic tree supports a
rich diversity of insect herbivores, especially leaf chewers, skele-
tonizers and sap-sucking hemipterans (Davatchi 1958). To
defend against herbivores, this plant produces a variety of
chemical compounds, including essential oils and phenolics.
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The oils can have repellent properties, while phenolic com-
pounds may act as antioxidants or inhibit digestion of plant
tissues by herbivores (Landau et al. 2010; Navon et al. 2020). In
addition to chemical defences, this plant also possesses physical
defences, such as a low SLA (Jonasson et al. 2003), which is
associated with increased leaf toughness. The leaf traits are usu-
ally influenced by environmental factors (Said et al. 2011), sea-
sonal changes (Said et al. 2011), phenological stages (Carvalho
et al. 2014), and plant sex (Juvany et al. 2014; Yaniv &
Dudai 2014).

Study site

The field experiment was conducted in Donana National
Park, southern Spain. A total of 100 P. lentiscus plants were
selected across two Mediterranean scrubland sites: El Puntal
(P; 36°57'54.38"N, 6°26'47.15"W) and Matasgordas (G;
37°07'28.88"N, 6°25'48.71"W; Fig. 1). Both sites are Mediterra-
nean sclerophyllous shrubland dominated by P. lentiscus. Other
species present in the area include Phillyrea angustifolia, Olea
europaea var. sylvestris, Asparagus aphyllus, Myrtus communis,
Erica arborea, Ulex australis, Halimium halimifolium and Cistus
salviifolius. In June (i.e., early growing season, just after flower-
ing), 92 plants (46 females, 46 males) were sampled; while in
October (i.e., late growing season, at the peak of fruiting), 100
P. lentiscus plants (53 females and 47 males) were sampled.
Eight plants were not sampled in June because they lacked suf-
ficient leaves to assess insect herbivory. We georeferenced each
individual P. lentiscus plant using a handheld GPS device, and
recorded its precise location coordinates. Canopy cover area
was then measured in QGIS (v. 3.34.5-Prizren; Quantum GIS
Development Team, 2021) by manually delineating each
plant’s canopy polygon from high-resolution aerial imagery
obtained from Google Earth (Google Inc., 2024), with an
approximate spatial resolution of 0.5 m.

Herbivory measurements

We randomly collected 20 fully expanded leaves of similar age
per plant, based on position along the branch, colour, and tex-
ture (Moreira et al. 2024), to assess herbivory during both the
early (June) and late (October) growing season of 2023.
The leaves were oven-dried immediately after collection for a
minimum of 48 h at 45°C. For each leaf, we visually estimated
insect herbivory as the percentage of leaf area removed by leaf
chewers and skeletonizers, using eight defoliation categories:
0%, 0.1%-5%, 5.1%-10%, 10.1%-15%, 15.1%—-25%, 25.1%—
50%, 50.1%—75%, and >75.1%. To minimize bias, a trained
observer (EVC) conducted the assessments without knowledge
of the origin of the leaf. Herbivory was then averaged at plant
level using the midpoint of each percentage category to calcu-
late a mean value for each plant. Although deer are present in
our field sites, we did not observe any vertebrate herbivory
damage on the sampled plants.

Leaf trait estimation

We collected 10 fully expanded, undamaged leaves per plant
during the early (June) and late (October) seasons to analyse
defence traits (phenolics and SLA), using the same criteria as
for herbivory sampling: leaf position, colour and texture. We
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Fig. 1. Maps showing location of Donana National Park and the two study sites, El Puntal (P) and Matasgordas (G), are provided in the left panels. Right panels
display spatial distribution of sampled P. lentiscus individuals within each site, indicated by orange circles. These maps provide a visual overview of the study

area and geographic positioning of the sampled plants.

measured leaf traits on undamaged leaves to minimize con-
founding effects from induced defences, especially local induc-
tion triggered by prior herbivory (Abdala-Roberts et al. 2016;
Moreira et al. 2024). The leaves were oven-dried for 48 h at
45°C. For each plant, we finely grounded five oven-dried leaves
to obtain a single sample per plant. We then extracted 20 mg
leaf tissue with 70% methanol in an ultrasonic bath for
15 min, followed by centrifugation and dilution of the metha-
nolic extract (Moreira et al. 2014). We colorimetrically deter-
mined total phenolic content using the Folin—Ciocalteu
method in a Biorad 650 microplate reader (Bio-Rad Laborato-
ries, PA, USA) at 740 nm, with tannic acid as standard (Mor-
eira et al. 2014). The remaining five leaves were scanned and
weighed to calculate specific leaf area (SLA, cm® mg ). Leaf
area was determined using Image] v. 2.14.0/1.54f (Image]2,
2023), and SLA was averaged at plant level.
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Statistical analysis

We built Linear Mixed-effect Models (LMM) to analyse the
effects of plant sex (two levels: male vs. female), season
(two levels: early vs. late), and their interaction, as well as
site (El Puntal vs. Matasgordas) (all fixed factors) on insect
herbivory and leaf defences (phenolics and SLA). We also
included plant area as a covariate to assess whether the size
of the plant influenced herbivory levels and leaf traits. To
account for repeated measurements from the same plants
across different seasons, plant ID was included as a random
factor in the models.

To evaluate whether assumptions of the LMMs were met, we
conducted diagnostic checks of residuals. Specifically,
we examined residuals versus fitted values to assess homosce-
dasticity, and used Q-Q plots and kernel density plots of
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residuals to evaluate normality. These visual inspections indi-
cated that the assumptions of normality and homoscedasticity
were reasonably satisfied for both phenolics and herbivory
data. To further validate these results, we employed functions
from the performance package (e.g., check_model() and
check_distribution()). Model fit was assessed by calculating
marginal and conditional R* values using the r2() function
from the same package. These metrics represent variance
explained by the fixed effects alone (marginal R*) and by both
fixed and random effects combined (conditional R?). To
enhance transparency and allow readers to assess model
robustness, diagnostic plots for the main models are provided
in the Figs. S1 and S2.

Additionally, we conducted a permutation-based ANOVA
(aovperm) to assess the effects of the same studied factors
on SLA. The aovperm method was chosen because of the
non-normal distribution of the data and was used with
5000 permutations and the Freedman-Lane method to
account for nuisance variables. In contrast, total phenolic
content data had approximately normal distribution, and
diagnostic checks indicated that model residuals met the
assumptions of normality and homoscedasticity. Therefore,
we retained the LMM approach for this variable as it pro-
vided a parsimonious and interpretable analytical frame-
work. To ensure consistency and assess the robustness of
our results, we additionally conducted a sensitivity analysis
using permutation-based ANOVA (aovperm) for phenolics.
This alternative analysis yielded qualitatively similar results
(not shown), further supporting the validity and reliability
of the LMM-based findings.

Finally, to evaluate whether the measured leaf traits medi-
ated the effects of plant sex and season on herbivory, we re-ran
the herbivory model described above, this time including total
phenolics and SLA — measured separately for the early and late
seasons — as covariates. We expected that if physical traits or
chemical defences mediate effects of plant sex and season on
leaf herbivory, then significant effects of any of these factors
(or their interaction) should be non-significant once such traits
are accounted for in the model.

We focused on how leaf traits influenced herbivory,
rather than the reverse, because our measurements were
based on undamaged leaves. This approach allowed us to
assess constitutive defences, minimizing potential bias from
locally induced responses triggered by herbivore damage,
and better isolating intrinsic variation in plant defence strat-
egies (Abdala-Roberts, Moreira, et al. 2016; Moreira
et al. 2024). Pairwise differences between levels of the inter-
action (Plant sex x Season) were tested using post-hoc
pairwise comparisons of estimated marginal means, adjusted
for multiple comparisons with the Tukey method (per-
formed with the emmeans package in R).

Prior to modelling, we standardized and centered all con-
tinuous predictors to facilitate comparisons of their effect
sizes. We also checked for multicollinearity by calculating
the variance inflation factor (VIF) for each explanatory vari-
able, ensuring that none had strong correlations (all VIFs
<5, the standard threshold for detecting multicollinearity
issues; Miles 2022). All analyses were run in the R Core
Team (2024) with packages lme4 (Bates et al. 2014), perfor-
mance (Ludecke et al. 2021), emmeans (Lenth 2024), car

Valdés-Correcher, Calvo, Rigueiro, Lago-Nunez, Jordano & Moreira

Table 1. Summary of linear mixed models testing the effect of plant sex
(two levels: male vs. female), season (two levels: early vs. late), their interac-
tion, plant area, and site (two levels: El Puntal vs. Matasgordas) on insect
herbivory and leaf phenolics.

F-value

predictor (df) P-value  estimate (SE) R%m (R%)

Insect herbivory

Plant sex 2.642 (1) <0.001 —0.268 (0.102) 0.369 (0.621)
Season —6.989 (1) <0.001 —0.559 (0.080)

Plant sex x 2.462 (1) 0.0156 0.282(0.115)

season

Plant area 3.025(1) <0.001 0.008 (0.003)

Site 0.144 (1) 0.886 0.012 (0.085)
Leaf phenolics

Plant sex —1.777 (1) 0.077 —16.851(9.482) 0.381(0.539)
Season 7.125(1) <0.001 59.015 (8.283)

Plant sex x 1.704 (1) 0.092 20.215(11.864)

season

Plant area —0.624 (1) 0.534 —2.370(3.799)

Site 3.271(1) <0.010 24.797 (7.582)

P-values are in bold when they are significant. Marginal (R?,) and condi-
tional (R%.) R? are reported.

(Fox & Weisberg 2018), permute (Simpson 2022) and per-
muco (Frossard & Renaud 2021).

RESULTS

Insect herbivory caused an average (£ SE) of 8.05 + 0.48% dam-
age to leaf area across sampled plants (n = 92 in the early season
and n = 100 in the late season). We found that plant sex and sea-
son significantly affected leaf herbivory. Herbivory was signifi-
cantly higher in males (mean & SE: 8.79 £ 0.74%) than in
females (7.35 £ 0.62%), and in the late season (11.00 £ 0.77%)
compared to the early season (4.84 £ 0.31%). We also found a
significant plant sex X season interaction (Table 1), where insect
herbivory was significantly higher on males than on females in
the late season (mean difference = 0.269 & 0.102 SE,
P-value = 0.045 from the post-hoc pairwise comparisons;
Fig. 2A), while there were no significant differences in the early
season (mean difference = —0.014 & 0.105, P-value = 0.999
from post-hoc pairwise comparisons; Fig. 2A).

The concentration of leaf phenolics was, on average,
372.79 + 4.29 mg g . Season, but not plant sex or the plant
sex X season interaction, significantly affected leaf phenolics
(Table 1). In particular, the concentration of leaf phenolics was
higher in the early season (408.32 + 4.64 mg g~ '') than in the
late season (304.11 + 5.23 mg g_l) (Fig. 2B). The SLA was,
on average, 4.954 + 0.089 mm” mg . Similarly, season, but
not plant sex or the plant sex X season interaction,
significantly affected SLA (Table 2). Specifically, SLA was sig-
nificantly higher in the early season (6.01 + 0.09 mm?® mg ')
than in the late season (3.95 4+ 0.06 mm” mg~; Fig. 2C).

When leaf phenolic concentration and SLA were
included as covariates in the model for herbivory, the
effects of plant sex, season and their interaction remained
significant (Table 3), suggesting that these leaf traits did
not account for the observed plant sex and season effects
on herbivory.
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Fig. 2. Variations in insect herbivory (A), leaf phenolics (B) and specific leaf area (SLA) (C) between the early and the late season, and between female and
male plants. Small dots represent raw data, while large dots and error bars represent mean values of the raw data & SE. Asterisks indicate significant differ-
ences between seasons (LMM and aovperm) and between sexes (LMM followed by post hoc pairwise comparisons).

Table 2. Summary of aovperm, testing the effects of plant sex, season,
their interaction, plant area and site on SLA.

predictors SS F-value (df) P-value
Plant sex 0.04 0.074 (1) 0.790
Season 203.4 380 (1) <0.001
Plant sex x season 0.141 0.263 (1) 0.605
Plant area 0.001 0.002 (1) 0.967
Site 0.028 0.053 (1) 0.825

P-values are in bold when they are significant. Sum of Squares (SS) is the var-
iability explained by each factor.

Table 3. Summary of linear mixed models testing the effects of plant sex,
season, their interaction, leaf phenolics, plant area, SLA and site on insect
herbivory.

predictor F-value (df) P-value estimate (SE) R% (R%)
Plant sex 2.432 (1) 0.016 0.250(0.103) 0.371(0.630)
Season —3.769(1) <0.001 —0.499(0.132)

Plant sex x —2.256 (1) 0.026 —0.259(0.115)

season

Plant area 2.947 (1) <0.010 0.127 (0.043)

Site 0.446 (1) 0.656 0.039 (0.088)

Leaf phenolics —1.426 (1) 0.156  —0.064 (0.045)

SLA 0.036 (1) 0.971 0.002 (0.059)

P-values are in bold when they are significant. Marginal (R?,) and condi-
tional (R%.) R? are reported.

DISCUSSION

This study highlights the importance of temporal dynamics in
the relationship between plant sex and herbivory in P. lentiscus.
While most previous research focused on static comparisons
between male and female plants, our study is, to our knowl-
edge, the first to explicitly investigate how these interactions
shift across the growing season. By examining both early and
late season patterns, we show that herbivory levels — but not
defence traits — are shaped by a dynamic interplay between
plant sex and seasonality. These findings highlight the need to
consider seasonal context to fully understand sex-specific

Plant Biology

ecological strategies and plant-herbivore interactions in dioe-
cious species.

We found that herbivory was higher in male plants than in
female plants. These findings align with previous studies suggest-
ing that male plants in dioecious species may be more vulnerable
to herbivory because of a trade-off between growth and defence
(Jing & Coley 1990; Cornelissen & Stiling 2005). Males often pri-
oritize vegetative growth, potentially limiting investment in
chemical or structural defences, particularly during periods of
high herbivore pressure (Yang et al. 2020). However, contrary to
our expectations, we found no direct effects of plant sex on phe-
nolic concentrations or SLA — two traits commonly associated
with herbivore resistance. Although both phenolics and SLA are
widely recognized as important determinants of herbivore dam-
age (Agrawal 2007; Mithofer & Boland 2012), the literature
reports mixed results regarding their effectiveness and sex-based
variation (Cornelissen & Stiling 2005). Our findings are consis-
tent with studies that also report no sexual dimorphism in
defence traits: Stark & Martz (2018) found no sex-based differ-
ences in phenolic or terpenoid concentrations in Juniperus com-
munis, and Nell et al. (2018) reported no differences in SLA, C:N
ratio, water content, toughness or terpene levels in Baccharis sali-
cifolia. Similarly, Hjéltén et al. (1993) found no sex-based differ-
ences in leaf N content in P. lentiscus. These results suggest that
herbivory differences between sexes may not be explained by
commonly measured traits alone, pointing to the involvement of
other, possibly unmeasured, mechanisms, such as induced
responses, volatile organic compounds, or herbivore behaviour.
Future studies should investigate these additional pathways to
better understand the complexity of plant-herbivore interactions
in dioecious systems.

Herbivory was significantly higher in the late season com-
pared to the early season, reflecting an increase in herbivore
activity as the growing season progresses. This is likely related
to the rise in insect populations, especially toward late summer
and early autumn, as many herbivores complete their repro-
ductive cycles and have higher numbers of individuals foraging
on plants (Richards & Coley 2007; Wang et al. 2023). More-
over, the cumulative effect of herbivory over time likely con-
tributes to the increased damage seen in the late season, as
plants face continuous herbivore pressure throughout the
growing period. For instance, Richards & Coley (2007) found a
significant increase in herbivore activity and damage during the
late season in tropical dry forests. Similarly, Wang et al. (2023)
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Seasonal and sex drivers of herbivory and defence

found a significant increase in herbivory in late season, espe-
cially in deciduous broadleaved seedlings. In contrast, phenolic
concentrations were higher in the early season, supporting the
idea that plants prioritize chemical defences when herbivore
pressure is lower (Carvalho et al. 2014). Phenolic compounds,
which serve as a deterrent to herbivores, are typically more con-
centrated during rapid growth phases when resource availabil-
ity is high (Said et al. 2011). Similarly, SLA was higher in the
early season than in the late season, reflecting the production of
thinner, faster-growing leaves that shift toward tougher, thicker
leaves in the late season (Reich 1991; Zhang et al. 2016). This
change in leaf structure makes plants more resistant to herbiv-
ory as the season progresses. These seasonal shifts in leaf traits
and defences illustrate the dynamic nature of plant strategies,
where plants adjust resource allocation to balance growth and
protection in response to seasonal changes and herbivore pres-
sure (Coley et al. 1985; Tonnabel et al. 2017).

The interaction between plant sex and season was a key
finding in this study, significantly influencing herbivory pat-
terns. Male plants experienced higher herbivory than female
plants in the late season, but there were no differences was in
the early season. This dynamic interaction likely reflects shift-
ing resource allocation priorities as dioecious plants transition
from vegetative to reproductive stages. Males may prioritize
growth early in the season, investing less in defence, while
females, which allocate more resources to reproduction, may
increase investment in defence traits later in the season (Ton-
nabel et al. 2017). These temporal shifts underscore the impor-
tance of considering both plant sex and seasonal changes to
understand herbivory patterns in dioecious species. Notably,
despite this observed interaction, the plant sex x season effect
did not influence the defence traits measured in this study,
namely phenolic concentration and SLA. This highlights the
need to investigate additional forms of defence beyond those
measured in the present study, including structural traits (e.g.
trichomes), inducible responses and tolerance strategies, such
as regrowth capacity or nutrient mobilization. Furthermore,
examining seasonal variation in herbivore identity and feeding
behaviour could help determine whether changes in herbivore
communities drive the observed patterns (Avila-Sakar &
Romanow 2012; Juvany et al. 2014). Future studies addressing
these aspects would provide a more comprehensive under-
standing of the temporal dynamics underlying plant-herbivore
interactions, and offer valuable insights into the ecological
consequences of sexual dimorphism in dioecious species.

This study highlights the temporally dynamic nature of
plant-herbivore interactions in dioecious species, emphasizing
the critical role of seasonal variation. These findings underscore
the complexity of herbivory and defence strategies in P. lentis-
cus, showing that these processes fluctuate throughout the
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